1,832 research outputs found

    Superhydrophobicity on hairy surfaces

    Full text link
    We investigate the wetting properties of surfaces patterned with fine elastic hairs, with an emphasis on identifying superhydrophobic states on hydrophilic hairs. We formulate a two dimensional model of a large drop in contact with a row of equispaced elastic hairs and, by minimising the free energy of the model, identify the stable and metastable states. In particular we concentrate on "partially suspended" states, where the hairs bend to support the drop -- singlet states where all hairs bend in the same direction, and doublet states where neighbouring hairs bend in opposite directions -- and find the limits of stability of these configurations in terms of material contact angle, hair flexibility, and system geometry. The drop can remain suspended in a singlet state at hydrophilic contact angles, but doublets exist only when the hairs are hydrophobic. The system is more likely to evolve into a singlet state if the hairs are inclined at the root. We discuss how, under limited circumstances, the results can be modified to describe an array of hairs in three dimensions. We find that now both singlets and doublets can exhibit superhydrophobic behaviour on hydrophilic hairs. We discuss the limitations of our approach and the directions for future work

    Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks

    Get PDF
    The gene regulatory network (GRN) is the central decision‐making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large‐scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. DOI: http://dx.doi.org/10.7554/eLife.02863.00

    3 tera-basepairs as a fundamental limit for robust DNA replication

    Get PDF
    10 p.-2 tab.In order to maintain functional robustness and species integrity, organisms must ensure high fidelity of the genome duplication process. This is particularly true during early development, where cell division is often occurring both rapidly and coherently. By studying the extreme limits of suppressing DNA replication failure due to double fork stall errors, we uncover a fundamental constant that describes a trade-off between genome size and architectural complexity of the developing organism. This constant has the approximate value N_U ≈ 3×10^12 basepairs, and depends only on two highly conserved molecular properties of DNA biology. We show that our theory is successful in interpreting a diverse range of data across the Eukaryota.MAM, LA and TJN acknowledge prior support from the Scottish Universities Life Sciences Alliance. JJB acknowledges support from Cancer Research UK (grant C303/A14301) and the Wellcome Trust (grant WT096598MA). TJN acknowledges prior support from the National Institutes of Health (Physical Sciences in Oncology Centers, U54 CA143682).Peer reviewe

    The contribution of dormant origins to genome stability:from cell biology to human genetics

    Get PDF
    AbstractThe ability of a eukaryotic cell to precisely and accurately replicate its DNA is crucial to maintain genome stability. Here we describe our current understanding of the process by which origins are licensed for DNA replication and review recent work suggesting that fork stalling has exerted a strong selective pressure on the positioning of licensed origins. In light of this, we discuss the complex and disparate phenotypes observed in mouse models and humans patients that arise due to defects in replication licensing proteins

    Defects in the origin licensing checkpoint stresses cells exiting G0

    Get PDF

    Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C.elegans Embryos

    Get PDF
    SummaryDuring cell division, chromatin alternates between a condensed state to facilitate chromosome segregation and a decondensed form when DNA replicates. In most tissues, S phase and mitosis are separated by defined G1 and G2 gap phases, but early embryogenesis involves rapid oscillations between replication and mitosis. Using Caenorhabditis elegans embryos as a model system, we show that chromosome condensation and condensin II concentration on chromosomal axes require replicated DNA. In addition, we found that, during late telophase, replication initiates on condensed chromosomes and promotes the rapid decondensation of the chromatin. Upon replication initiation, the CDC-45-MCM-GINS (CMG) DNA helicase drives the release of condensin I complexes from chromatin and the activation or displacement of inactive MCM-2–7 complexes, which together with the nucleoporin MEL-28/ELYS tethers condensed chromatin to the nuclear envelope, thereby promoting chromatin decondensation. Our results show how, in an early embryo, the chromosome-condensation cycle is functionally linked with DNA replication

    Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories

    Get PDF
    Replication origins are licensed by loading MCM2-7 hexamers before entry into S phase. However, only ∼10% of licensed origins are normally used in S phase, with the others remaining dormant. When fork progression is inhibited, dormant origins initiate nearby to ensure that all of the DNA is eventually replicated. In apparent contrast, replicative stress activates ataxia telangiectasia and rad-3–related (ATR) and Chk1 checkpoint kinases that inhibit origin firing. In this study, we show that at low levels of replication stress, ATR/Chk1 predominantly suppresses origin initiation by inhibiting the activation of new replication factories, thereby reducing the number of active factories. At the same time, inhibition of replication fork progression allows dormant origins to initiate within existing replication factories. The inhibition of new factory activation by ATR/Chk1 therefore redirects replication toward active factories where forks are inhibited and away from regions that have yet to start replication. This minimizes the deleterious consequences of fork stalling and prevents similar problems from arising in unreplicated regions of the genome

    Improved design of all-optical processor for modular arithmetic

    Get PDF
    A new improved design of an all-optical processor that performs modular arithmetic is presented. The modulo-processor is based on all-optical circuit of interconnected semiconductor optical amplifier logic gates. The design allows processing times of less than 1 µs for 16-bit operation at 10 Gb/s and up to 32-bit operation at 100 Gb/s

    Xenopus Mcm10 is a CDK-substrate required for replication fork stability

    Get PDF
    <p>During S phase, following activation of the S phase CDKs and the DBF4-dependent kinases (DDK), double hexamers of Mcm2-7 at licensed replication origins are activated to form the core replicative helicase. Mcm10 is one of several proteins that have been implicated from work in yeasts to play a role in forming a mature replisome during the initiation process. Mcm10 has also been proposed to play a role in promoting replisome stability after initiation has taken place. The role of Mcm10 is particularly unclear in metazoans, where conflicting data has been presented. Here, we investigate the role and regulation of Mcm10 in <i>Xenopus</i> egg extracts. We show that <i>Xenopus</i> Mcm10 is recruited to chromatin late in the process of replication initiation and this requires prior action of DDKs and CDKs. We also provide evidence that Mcm10 is a CDK substrate but does not need to be phosphorylated in order to associate with chromatin. We show that in extracts depleted of more than 99% of Mcm10, the bulk of DNA replication still occurs, suggesting that Mcm10 is not required for the process of replication initiation. However, in extracts depleted of Mcm10, the replication fork elongation rate is reduced. Furthermore, the absence of Mcm10 or its phosphorylation by CDK results in instability of replisome proteins on DNA, which is particularly important under conditions of replication stress.</p

    DDK:The Outsourced Kinase of Chromosome Maintenance

    Get PDF
    SIMPLE SUMMARY: To ensure the maintenance of genetic stability prior to cell division a cell’s complement of chromosomes must be duplicated. This requires not only the replication of the chromosomal DNA but also the re-establishment the chromatin environment following duplication. To ensure the equal segregation of the genetic material to progeny cells, the duplicated chromatid pairs must remain physically coupled until cell division. The regulation of chromosome duplication is under the overall control of the cyclin-dependent kinases (CDK). In addition to maintaining global control of chromosome duplication, CDK directs the activation of a second kinase, the Dbf4-dependent kinase (DDK), which functions locally to facilitate the activation DNA replication and to coordinate this with the re-establishment of chromatin and the physical coupling of the chromatids following duplication. In this review, we discuss this ‘outsourcing’ by CDK to DDK of the activities that must be coordinated to ensure chromosome maintenance during cell division. ABSTRACT: The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully
    corecore